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IX~(O.O)I 2 = P(V relj,rel 3r *(~=='wo(.+1 

H2 "rel 
3 F(v'=l) & 

p~ponrel) 4m2 v~~~rel 1 G- (0,12 [l- 2 gCv'=l) + O(Ca~)l 

P 

for PI,, > 2mq, where 

F(v) - <4lT+v)IL -cxp(-4lCa,/3v)l 

is the usual Coulomb factor and g(o) = 1 is associated with the lowest 

order gluoaic radiative corrections. Ye preseat numerical evidence for 

the reiarkable accuraq of these relations. whlcb have important 

irplicationsforthe use of nonrelativistic potential modela to describe 

q\urkonium aysteu. We also discuss some subtleties in the v and a, 

dependence of correctlone to leptonic widths. 
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1. INTRODUCfION 

The square of the Bethe-Salpeter wave function at the origin is aa 

important quantLty for qi systems. For example, it appears lo 

expressions for the leptonic and hadronie widths r + _ and r3g for L-’ 
em 

states. and the hadronfc vidths r,, for the O- states. The leptoaie 

vidth for the decay of L- atetes which will appear later in this paper 

is givea by 

r,(e+e-) - 
16ur2e 2 

lh’ 

’ Ix~&O)~2(1-A,,) - (1) 

Berm a ts the fine structure constant, eq is the quark charge in units 

of e. and I$, - 2mq+En-U ia the tote1 energy of the qi or l +e- system. 
* 

~~(0.0) is the large-large S-state component of the Bethe-Salpeter 

tvo-fermion wave functton for zero space-tlr separation of the quarks. 

and A,, corrects for D-state, mmll-small, and (kinematic) relstLvistie 

effects left out in the Large-large approrlestion. L 

The fuactlon x,$,0) is frequently treated theoretically by 

replaciag the full Bethe-Sslpeter interactloo kernel by aa appropriate 

instantaneous interaction (the Salpeter approximation). This reduces 

the Bethe-Salpeter equstton to a relative-tim-iindependent Salpeter . 
* 

equatioo. +.(O,O) is rhea written ln term of a first approxfaatlon 

r~lco’, sod a factor vhlch corrects for the retardattoo and gluaic 

radtstlve effects omitted in the lnatantaneous approxloatton. 

Ix&,O)l 2 - Ir=$ (o*)12(L-A’,) . (2) 
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The definition of G in this expression depends on the scheme used to 

determine Yrsl; oaiy the complete function ,,(;.O) is unique. Beuwe 

of the difflcultles involved la constructing and solving relatlvistlc 

models for qz systems, the relativistic wave function YsL(G) is 

usually approximated in phenomenologieal studies of quarkoniua by the 

solution +rL(($) of a Scht~dinger equation with a potential 

adjusted to fit the observed apectrua. It is therefore of considerable 

importance to explore the relationships betveen I,(*o,O) (or aa 

appropriately defined Ye;'). and the Schtodinger wave function 

+~nrel(~) or other better understood quantities. 

In two receut papers. 1.2 we discussed the calculation of the 

leptonic width r,(e+e-) in detail (Eqa. (1) and (2) appear am Eqs- (57) 

and (58) in Ref. 1.) Ye shoved that for nonsingular Interactions the 

Salpeter wave function YDs "l(z) is simply related to the SQrOdLnger 

wave function +~reI(~) calculated with a potential which fits the 

exact relativistic spectrum. We then used a duality argument and a 

conjectured extension of thie result to the case of potentials with a 

color-Coulomb singularity to eetirate the 'radiative correctlm' A: to 

the leptonlc wldtbo of 'SL stated in chamonium and b-quarkcmlum to 

O(az), where (I# is the strong coupling coostent. In the present paper. 

we will extend our earlier results to the case of slngulat potentials. 

and demonstrate the remarkable accuracy of our relations nulerlcally. 

The plan of the paper la ad follows. In Sec. 11, we review l mv 

background: the relation of IY~(O)I~ to the inverse delulty of states 

for either reLatlvlst1c or nonrelatlv1stle eysteas with nonslngutir 

1oteractLone. the resulting relation between lY’~‘(O)l md 2 

and the extension of the nonrelatlvtstLc relation to 
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siogolsr potentials. In Sec. III we preeent ouwrlcal tests of our 

reletlone for l reLatlvlstlc oscllletor interaction, end show that they 

ere accurate to e few percent even for highly reLatlvletlc particles. 

In Sec. IV, we extend our results for the relativistic weve function to 

the physically interesting ceee of potentials with color-Coulomb 

sieguIerltles, and age10 demoaatrate their velidlty numerlcelly. In 

See. V. we discusa the urlculation of A,, in Eq. (l), end the relation 

of A,, mod Ai to the QCD perturbation expaosloo for the e+e- 

eoolhiletloo cross section. We summerire our prlncip~l results la 

Sec. VI. 

II. McKGROUND 

We bcglo by recalling that I@~nre’(~)12. the square of the 

Schrudlnger weve function st the origin, is related to the loverse 

density of cstetes dEo/dn lo the JVIB epprorlmetlon by37 

2 
ll&~*==l(o)12 - - v Iq eonreLdEn 

4r2 n as 
(3) 

vhere Y,, 1s the velocity of e free quark with klaetlc energy 

+ [*~-vc(o)l. 

v~~==~- [(E,,-V,(0))/r#q]L12 , (4) 

cud the conflniog potentlel V,(r) is assumed to bn ooneinguLst et r-0. 

IO Ref. I, we derived e reLatlvistic analog of Eq. (3) for the Selpetcr 

vrvefunctlon for an lnstantaaeoue qi lnteractlon. 
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H-2 rel 
IYZL (0,12 - n vn -, 

% 

16e2 dn 

where vrl is the velocity of e free quark with tote1 eneergl i n;l - 

;[~-VE(0)], FL,, - 2mq+ if,. mod 

%I 

l-ml rn [i- ?jLF 

0 

(6) 

The existence of such e reletloo for the reLetlvistic ceee had beea 

conjectured but sot proved by Telnov. ’ Agelo. the lnterection must be 

noeelo~ular et the orlgfn far Eq. (5) to hold, es this result ves 

derived by meklog the JUKS approximation on e ‘teLetlvisttc 

Schrltdlnger’ reduction of the Salpeter equetfon correct to 0(v2/c2). 

For nooelagular potentlels. then, we coo use Eq. (5) to relrte 

IYr~(0)12 directly to the resurable quentlty dll,,/dn; or we can 

combine Eqs- (3) rod (5) to relate l~~~‘<O)l~ to the Schrodlnger weve 

function 1911S-==1(0)12 correspondlog to the seme ueeured spectrru, - 

rel 

ly~‘(o)12 - 2 ~;=renrell.+~==l~Oj12. 

4% PII 

We empheslre that l e l pectrum is generated by different 

lnterectlons in the nonreLetivlstle and reLetlvistlc ceeee. We are not - 

concerned with the more familiar problem (e.g.. lo QfD) of relating 
. 
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relativlstlc end oonrelativistic wave functions for e fixed 

ieter*ctlm. 

If V,(O) - 0 for both the relativistic and noarelativlstlc ceees, 

we cm write the factor la Eq. (7) es 

I¶‘, .El R 

;;+ vnonrel 
- (1 + >I (1+ G)L/2 . 

q n P 9 
(8) 

This is elveys greeter then unity for E, > 0 (es for e aoootooieally 

rlelmg coeflning potentiaL). so tbet lY~‘(0)12 is slv*ys greater then 

IQDDM1(0)!2. The phyeicel reeeon for this is that the relstivlstic ms 

klDctlc ewrgy in the Selpeter equation is Less theo the 

eomreletiristlc kinetic l necgy. 

2(,2++1’2 - 2mq < p2lIp . (9) 

Ae I reeult. for l fixed spectrum, the relatlvlstlc potential energy 

must be larger then the nonrelativlstlc potential energy, end the 

relatiristie "eve function is more tightly coofined. hence larger et 

tbe ori+~ 

Ie Sec. III. we preseot numerical teete of Eqs. (5) and (7) for 

tbe l plelees oecilletor potentiel vhlch demonettste thet these 

eqortlam l re eecurete to l few percent even for highly relatlvlatlc 

p*rtlclee. Vk also teet gq. (5) for the orcllLator lateractian with 

vector coeplieg (e strongly spin-dependent case). Although eplo 

depealeoce wee oat built into our derlvstioo of Eq-. (S), the results 

tre *pin excellent. 



Since realistic qi potentials involve e siuguler color-Coolomb 

component. Eqs. (3) end (5) canuot be used es they std for the qi 

eystem. However, Bell and Pasupathy' and Frtlmn sod ?r8re11~~*L~ have 

extended the noncelativistfc relationship to the siuguler potmuriel 

4 
v- --a 

3 S= 
-’ + V,(r). where (I, is the strong coupling coaetant sod 

the coafloiog poteatlal V,(r) is again uousiugular et the origin. 

Their result for En-V=(O)> 0 is 

2 
I+~*=el(0)12 _ F(,~l) "9 vuonrel 2, 

4x2 ” 
(10) 

where vnnourel IS given in Eq. (4). aad F(v) is the Coulomb fector 

x.1 - I+plo”b(o) 12 - 4% 3r [L-exp(-4nae/3.)l-l (11) 

Thus the only explicit effect of the extre color-Coulomb loterection lr 

to nrItlpLy the original formula lo l!q. (3) by F(vuooorel), though 

there is eo inplicit chenge through the change lo th; spectrum end 

dE,/dn. We will derive e relativistic geoerelizetiou of this result lo 

Sec. IV. 

Car lS-V,(O) < 0. we cm use either the phase integrel rthod of 

FrUran end FramenL" or e modifleatlon of the Bell-Pasupathy procedure 

to obteln the aLtematlve expression 12 

IhS no*==1 En - VJO) < 0 T (12) 
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This result le exact for e pore Coulomb potential, end cooeecte 

smoothly with Eq. (10) for Eu-V=(O) -t 0. 

III. UUHEXICAL TSSTS OF TEE JHKS SELATIONS L'OB OSCILLATOS POTENTIALS 

The expression for l+~nrel (O)l2 for noosioy1.r confiolng 

poteotleIe given in Eq. (3) bes been teeted by e amber of wtbore.13 

end is quite l ccur*te. We will therefore coacentrete OD. tests oi the 

rel*tlvlstlc relations lo Eqe. (5) l od (7). 

% first coesider a epinless Salpeter equetim for l q? eyster 

with en oecill*tor inter*ctlon. 

12 (p2 + r&l’2 - n + L 2 
P 

~ r ] i’“‘(b) - 0. (13) 

ubere G($) le the Selpeter r*ve function lo meeotum spece, end we beve 

erpreesed p. mq, X. and t -' in units of kL13, with k the eprlng 

consteet of the oecillator. With the substitutiooe r2 + -Vi end 

X -2mq+E,ve obtain the differential l quetioo 

2 112 [; v; + E - (2( p2 + mq' - 2mq)1 i==QQ - 0. 

l'he were fuectione l re of the form 

(14) 

?:;tb) - 4;rL(P) I&) (15) 

with the nomellzetloo 
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4=$ (p)12 p2 dp -1. (16) 

The S-state weve functions et the origin in coordinate epace ere given 

YZl(O) - -!-v-j d3 pi, ==e'G4 - --& I'; 4$ph2dp- (17) 
(2rj3 

We have solved Eq. (14) uumerlcelly for mq - 3.276 cud mq - 1.310 

(velues chosen to permit Leter coaporisou with spin-dependent 

calculations of Eostler and Repko"). Our results for the S-state 

spectrum and the exect "eve fuuctloue et the origin l re given in Teble 

I. We heve also ulculeted the JUKB prediction for l~~'(O)l~ luing 

Eq. (5) with dMu/du (or dE,/dn) calculated from e cubic polynorlal fit 

to the u-depeudeoce of the spectrum. The predictions for IY~~(O)I~ 

given lo Table I are lo l rcelleut agreement with the exact results l veo 

for 0-L. The uncertslaty in dN,lda is ou the order of ooe percent. se 

judged by comparing results for quadratic end cubic fits to the 

2 energies. cud le l eseutlelly es Large es the error. in IY~'(O)I . Ye 

note that the use mq - 1.310 is quite reLotivisitic with ground-state 

quark velocities v - 0.79 et the origin and v- I 0.65. 

In order to test the reletloo in tq. (7). we need Schradlnger weve 

functions for e poteutlel which has the same l pectcum as the Selpeter 

equation, Eq. (14). We ten convert Eq. (14) into the desired 

SchtCldlnger equatiou without chenging the eigenvelues E, by the 

substitution 5 + (mq/2)'12 ?. end flad that +oonreL(?) eatlsflee the 

equ*tlon 
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[$ V', + E - V(r)] $nonrel(~) - 0. 

where 

(18) 

(l9e) 

(19b) 

(L9c) 

Ihe Scbr6dinger potential V(r) is always less confining thea the 

oscillator poteutlal i r2 used in the Salpeter equetioo. in agreeeeot 

with the physical argumeut following Eq. (6). 

The poteutials end the (ideatical) spectra for Eqs. (14) end (18) 

sre *humA in ?I*. 1. The expected treed toward closer spaeiag of the 

energy levels ee V(r) epproaches the linear potential lo Eq. (19~) is 

clearly l vldeot (E, - (a - 
:j2') 

for the hlgb states in e lioeer 

poteotiel. vhile E,, -(u - :) for the oscillator). 

In Table II. n compare the exact values of tbe Salpeter weve 

fuoctiou et the origlu with the valuee predicted using Eq. (7). The 

yceernt le excelleat, with e eeximum error of 3.32 for the u-l stete 

to the highly relatlvistlc system with eq - 1.310. We uote that the 

couverelou frctor (4 vore1/4m2q vrrel ) is 1.22 l veu for the Least 

reletlvistlc etete (a-1. eq - 3.276). and is quite Large for the lore 

reLaclvlstic etates (5.33 for u-4, P q - 1.31). 
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1a the last column of table II we give the Schradlager vsve 

function st the origin for the oonrelstlvisitic aeclllstor problem 

the nonrelativistlc limit of Eq. (14). The Scbradinger “sve function 

is only s reasonsble (10%) approximstion to the Sslpeter wave function 

for the n-1 state with mq - 3.276. 

As a separate, mmewhst more realistic test of our relstloas in 

physical problems, we have used Eqs. (5) sad (7) to predict IFzl(0)!2 

for the 3Sl ststes in the problem studied by Eostler sad Repko. 14 Those 

authors solved the (large-large) Sslpeter equation exactly for sn 

oscillator interactton with vector coupling. The results are straagly 

spin-dependent. (The splitting between the 13S1 and llS, states tot 

the csse mq - 1.31 is 30% of the spin-averaged S-state eaetg, while the 

splitting between the 13Po snd 13P2 ststee is 35% of the epin- averaged 

Patate energy.) Nevertheless. as show in Table III. Eq. (5) gives 

excellent values for tlrs’ (0)t2 in term6 of the %l spectrum. The 

predletlone for the square of the lS, ws.e functioa at the ori& sre 

of comparable sccurscy. This is not a trlvlal result, since the 3Sl 
14 

and hi,, spectra and wave functions dtffcr stgniflcsntly. We therefore 

conclude that Eq. (5) is more generally valid than the derlvstion in 

Ref. 1 would suggest. 

We have aleo msda a rough check of the rel+tlon In Eq. (7) between 

the relstlvisltlc and nonrelstlvistlc vsve functlona for equlvslent 

potentlsls by obtslnlng best fits to the spta-averaged Hostler-Repko 

mpectrs using Schradlnger potentials of the form V(r) - Kr" and nlmilsr 
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forms. Although we could not fit the relstivisitic spectrum precisely, 

the results were resaoasbly good. with errors of 10% and 15% In the 

ground state wove functions for mq - 1.310 and 3.276. and errors of 

leea than 3% for the n-2 and n-3 ststes. The accuracy of the results 

for the excited ststes is especially striking in view of the very large 

conversion factor ia Eq. (7). We ate therefore confident that proper 

spio-dependent fits to the Rustler-Bepko spectra would lead to result* 

aa sccucste aa those in Table II. 

IV. RELATIVISTIC eXTeNSION OF TtW. COULOMB WE 

The relation in Eq. (10) between I+gnre1(0)12 and the inverne 

deaslty of *totes for potentials vith Coulomb eiugulsrities vss derived 

by Bell and Pssupsthy' usfng s modified JWB srgument snd'by Pruean and 

FrtJmsn" ruing s phase integrsl method. We will ume the Bell-Psmpathy 

rethod to derive l relstivlstie extension of Eq. (10). but note that 

our sssumptions could be veskened somewhat In the phase-integral 

approach. 10.11 

The Bell-Pasupsthy &choique is based on the assumption that the 

ezact Y.VC function in the potential 

4% 
-J(r) - - z + vcw, V=(O) finite , 

con be spproxlmstad by a pure Coulomb wsve Eunctloa for the shifted 

energy E-V,(O) for r amsll. and by the JUKB vsve function for the full 

potential for r large. By mstching the Coulomb snd JWB "ave functions 

st Internedlate c where Vc is relstlvsly uoimportsat. they construct a 
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pbsse-shifted JUKB function which is s valid solution of the 

Sctmadinget equation from the matching point out. This corrected JUKB 

function is then nomslired. The normslisstioa depends pri~prily on 

the behavior of the vsve function in the outer region "here the full 

potential scta, and is insensitive to the form of the wave functions 

very close to the origin. The result in Eq. (10) is then obtained by 

contiauing the oomslized wave function to the origin using the exact 

Coulomb function. 

The essentisl feature of Eq. (10) is that the effecta of the long 

range confining Interaction V,(r) appear only through the inverse 

density of atotes. The extra multiplicsfive factor relstive to gq. (3) 

ia eslculable uming only the color-Coulomb intcrsctioa. This relstion 

hss been tested nuaerlcslly for the Coulomb-plus-linesr potential by 

Bell sad Paaupsthy, fable I in Pef. 9. Ye give a similar teat in Table 

IV ruing a different fit to the spectrum Em." Except for the ground 

etste. rrhicb 10 not expected to be well described in the JUKB 

approrimstlon, Eq. (10) gives excellent values for [4.znre'(0)12. AO 

snalytic test of Eq. (10) for the euctly solvable Eulthen potent181 

VU given wme tiu ago in a different foceext by one of the authors 16 

rod has been repested recestly in are detail by F~LIPPD snd Ftt~utn,~~ 

again with excellent results. 

Our ertensloo of the Bell-Pssupsthy snslysla to relstivlstte qi 

systems involves sac subtletle~ vhlch are not present In the 

nonrelstlvlsttc problem, but the principle of the analysis is the ssme. 

We divide apsce into two regime, T > mi'and r 6 q -' 
-4 ' 

and treat them 

separately. We mppoae that the qi interaction 1s l dequarsly described 

in the outer region by the instsntsneous Coulomb-gauge lntersctlon lo 
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Eq. (21). sad will ignore possible long-range spin-dependent effects. 

7% donlnsnt S-state part of the Bethe-Salpeter vsve function for L-O, 

r >> I 9' is thea glveo by s solution of the Instantaneous Sslpeter 

eqaetion, q&,0) = Y%'(r), vhere 

[Z ( p2 + .*)1'2 - 
9 

I& + v(r)] rzl(r) = 0. (22) 

In the inner region. n mmt also include the retsrdstion and spin- 

dependent effects associated vith trsnsverse gluons in the ealculstlon 

of 2. Oar objective. follovlng Bell and Pssupsthy.9 is to con0tr"ct e 

mm-waltzed JVKB solution to Eq. (22) for the full potential, mstch this 

solution at sn intervdiste vslue of r to the solution of Eq. (22) for 

l pwe color-Coulomb potentisl. sad then continue the result through 

the inner regfoa to r - 0 to determine x(6.0). 

Ye vi11 begin by considering the outer region sad determining the 

normliratloa of the JUKB solution of Eq. (22). It is convenient for 

this purpose to reduce Eq. (22) to Schrudioger form. l7 We define the 

radlsl vsve funetioa u,(t) and sn effective potent181 Veff(r) ss lo 

Icf. 1. lb+. (45)-(477). 

urn(=) = u v2 v.Jr) 11 - ;1* 
9 

Vcff = v - & (En-n2 , 
P 

(23) 

(24) 

rbcre V(r) is the potential lo. Eq. (21). After l xpsndlng the square 

root in P.q. (22) sad iterstlng the resultlag equstloo. we obtsln a 

Schr8dlnger equation for v,(r), 
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d* 
v 

zn 
(=) + =q(En-Veff)vn(=) = 0, (7.5) 

which is valid to order v2/c2 in the region in which IV(r)/4mql<<l. We 

csr~ solve this equation in the N(B approri~tioo except ocsr the 

Coulomb singularity, and con m.tch that solution smoothly for 

V,(r)<4as/3r to s solution of the pure color-Coulomb problem (that is. 

s .olutioa of Eq. (22) vith V(r) = -4aJ3r ) by incorporsting .a 

appropriate phase shift in the JVM function s. discussed lo Ref. 9. 

(We assume that M,, - V=(O) > 2aq so that we ca. use free Coulomb 

vsvefunction..) 

To determine the norPallsstion of u,,(r) or V,(T). n add s saall 

delta function perturbation to Veff in Eq. (25). 

V eff * Veff + MC=-=,I. (261 

This induces a di.continuity of height mqA la the 1ogsritNc 

derivative of v.(r) st r-r0 and therefore chsnges the as)lptotic phase 

of urn(r) by .n emount L. 

c = -mq” * . ~27) 

Rere 

“(=I = ( P )112 
PT;T 

.l.A(r) 
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is the unperturbed Jl&B solution to Eq. (25). with the usual JvlcB phase 

A(r) shifted by e(E) to match smoothly to the Coulomb veve function for 

small r. 

A(=) = f P(=) dr + 6(g). p(r) = [r,(E-V,,] 
112, 

=mlll 
(29) 

and p is the relstivisitic momentum of a quark with total energy 

; U,, = .q + ; E,. 

The extra pbaee c chmges the JUWI quantiratiw conditloo from 

= +,I E +(a,) + .;‘* l=yza [5,-vcff +I2 dr + f = lp, 

n-1.2.... (30) 

to 

in(E,,) + c = xp . (31) 

Since IJ is fixed for s given stste. the energy cigenvalues E, ust 

change u l result of the perturbscion by OIL munt AEe, &te~lned,by 

the coaditiom 

d!$ bE,+c=O. 

Eqm. (27) end (32) give one relation for bC,. 

'9A .in2A(ro) de,, 
bE, = T 

PO,) da * 

(32) 

(33) 
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W csn obtain a second relstloo for bg, using first order 

perturbation theory. Because the effective poceatisl in Eq. (25) 1. 

energy-dependent, the calculatloa differs solewhst from that in Ref. 9. 

We find thst 

4% 
bE, I’, +)[l+,& (E,, + T +',)I dr = k +f,,) . 

9 
(3) 

The norPaiirstion condition for the Sslpeter vsve function urn(r) 1. 

given to order v2ic2 by' 

J; u;(r) dr = 1 = N J; <(=I [1 + 4 (2 - v,)Id= 

2m 

=Al& 0 
2 j- G,(r) [I+ L 4% 2mq (E. + 3r - V,)l d=. 

combining gqs. (34) mkd (35) in the JUKg region. yc find that 

*lh AP 
b== = u q gFJ .io* A&,, . 

(35) 

The normsllsatlon constsnt A is relstcd to dE,/dn by Eq.. (33) sad 

(36). 

06) 

‘h % N--A. 
ZIP Q 

(37) 
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If Vc(0) f 0. I$, should be replaced by q = s-V,(O). end p changed 

sccordlngly. 

Ye next observe that. by constructton, the .IWB vsve function 

coooccts smoothly tith the exact solution of Eq. (22) for a pure color 

Conlomb interactioa. 

“Jr) + N 112 @ul(,) 

= (4xIo1’2 r Yp”1 (r). 

V,(r) - V,(O) < 4as/3r, -1 r,m 
P * 03) 

Ecre e’ is the Salpeter Coulomb vsve fuactloa for energy E, -v (0). 4 

ulth the ususl plane vsve normslizstioa. L.C., I&?“~ (r) goes 

a.yxptotlcally to s .ine vsve of unit amplitudes for r + =. This 

function (vhich ve recently coastmcted snslytlcsllyl*) gives s 

l lutioa of the ‘free’ Bethe-Sslpeter problem (the problem in vhich the 

confining interaction is neglected) for r >> m -1, 
9 

sad, with s proper 

pbrse shift, connect. smoothly for r - m-1 q vlth the ‘free’ solutloo 

XS f===(r.0, vslid in the Inner region r < I 
cl 

-1.19 

E. conclude that the full Bethe-Sslpeter VW. function x,,.$r,O) 

can be approximated smoothly for different (overlapping) range. of r by 

x&=.0) -1-“y%). r>r,. (4”) %r (39s) 

s 111’2 Y!pJl(r). I;’ < r < Co* (39b) 

I 111/2 xp(r.0). 0 < r < lq-l , (39c) 

“here “* -(r) I. defined 1. Eq. (23). md co Is the JWKB-Coulomb 
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mstching point, m 
9 -’ < ro “ith V,(r,) - VJO) < 4as/3ro. If vex 

evsl”=t= ~~(0.0) “slog Eqs. (39~) and (37). ve find that 

Ix&.WI 2 = xl X~=(o,O)l2 

= &lX$yO.O)l” 2 . (400) 

To complete our derivation of the relstlvistic generslirstion of 

Eq. (10). we need to determine Ix~(0,0)12. We observe first that 

the square of the exact, properly normalized Salpeter Coulomb vsve 

f”nctioa for r - $1 involves on overall factor’* 

P2 p2 4Y3 
5; 

F(v==l) = - -[l -exp(-4nas/3v==~)l-1 . 
4x ),rel (41) 

This factor. which set,. the scale of xp(r,O) st r - 19’ is just the 

square of an ordinary Coulomb vsve function st r = 0. The 

chsrscterlstlc dependence of F(vrel) ora as/vrel is sssocisted vith the 

longer range (infrared) part of the Coulomb interaction. and csnoot be 

Podffied by short range effects ss r + 0. The fuactloa I$ee(0,0)12 

mast therefore contain k’(vrel) es an overall fsctor. and m”st be of the 

form 

‘xs f+==(o,o)l2 = g F(Pl)[l + O(aJ. 02) 



-21- 

Perturbative calculations of I~~e(0.0)12for l- ststes. or 

eqoivsleotly. of the cross section for e+e- + qi, 2og21 give 

1% f==e(0,0)~2(1-A) = $1 - f.r=l 2, [1 + - 2% 165 - 

3v==l 
3r g(v==l) + O(=f)l (43) 

where A is the correction defined in Eq. (1) andlB2 

g(v) = 1 + 0.046" - v(l-r) 2 
(44) 

is m accurate approximstioo to Schvinger'a exect expression. 20.2* The 

furor (1- l 
3 vrsl 2, in Eq. (43) may be identified with (l-b) as will 

be discussed in Sec. IV. The first tvo terms in the remaining 

expression ere just the leeding terms La the erprasioo of the expected 

color-Coulomb fsctor. 

F(.==‘) 4% =-IL- expG4ilas/3v==~) I 
-1 

3.==l 

2% Al+- +A&-- 252 

3*=l 3 3vrel 
)+... , (45) 

till+ the third term evsluated for v = 0 (g = 1) reproduces the 

rrdlbtlve correction to bound state decay vidths calculated by a number 

of l uthors23 

r, = rp 11 - l61r, + O(=t)l . (46) 
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We conclude from Eqs. (42) and (43) that 

2 16a 

Ixs 
f===(0,0)12 - & F(~~~~)[L - +I g(vrel) + O(=~)l . (47) 

The Coulomb factor F in Eq. (47) is in fsct known to mm the leading 

terms in as/v In the perturbative cslculatloo of ++a-+ q;i) or 

Ix,(0,0)12; set. e.g.. the discussion given by Poggio et 01. 24 In -- 

sdditioo. Celmaster 23 has shown that the 'rsdistive correction' 

16asg/3r is specifiully s short-range effect, cooslatent vith our 

srguueuts above. 

+e11y. combining Eqs. (40) sod (47). ve obtsio our relativlstlc 

geaerslirstioa of Eq. (LO) for l- rtates. 

Ix&.WI 2 4 = F(v==‘) - v rel %I 165 

16x2 * 
xl’ - 3r g(v==l) + oh+1 * 

(48) 

If Vc(0) i 0. I$, should be replaced to thls expression by Mu-V,(O), and 

rel the relstlvistic velocity v modified accordingly. UC conjecture but 

have oat proved that Eq. (48) should be modlfled for Ho < 2mq to 

Ix&ml 2, %4 dn, 1611, 
TK a;;- IL - 3r + w+l . (49) 
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The two expressioa. coanect smoothly for vrel + 0 and agree vlth 

Eqs. (10) aad (12) in the *onrelatlvi.tlc limit. 

These result. c.* be generalized to different spin-parity stetes 

by using the Coulomb factor for *onzero angular momentum, and changing 

the relstivistlc sod radlatlve correction factors to those spproprlate 

for the process of interest. 

I* Table V v. prese*t s auericsl check of our result.. We have 

ulculated the solutio*. to the Salpeter equation, Eq. (22),for the 

potential 

V(r) = - 3 + br cm 

for a = 0.25, b = 0.18 GeV2, and mq = 1.45 CeV (values lo the rsage 

needed for charmonlun) aad divided the result. by the solution of the 

Coulomb Salpeter equatio*‘8 .t .a.11 r. The ratio of the two vsve 

fuoetiona for r + 0 should equal the spectrum-dependent factor I* 

Es. (@a). 

4 cc1 % 
M’o $Y,W I Ty(r)12 ‘;;;;i v* xii’ (51) 

We see from Tsble V that the agreement of the numerlcsl end theoretlcal 

result. is excellent- The reralnlng argument. needed to justtfy the 

trsnsition fra Eq. (40) to Eq. (48) depend only o* the separation of 

short-rsnge snd long-range effects, and veil-estsbllshed result. In 

perturbstloo theory. 
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We note Eiaally that ve cm use Eq.. (LO) sod (48) to relate 

ooerelatlvlatic end relativistic vsve fuectioos which fit the same 

spectrum. Elininstlng dF$,/de = dE,/dn betveeo the tvo equations, we 

find that 

2 Ix~s(o.o)I - F(vrel) 4 vrel 
F~v*onrel 1 $ veonrel 

l&!=qO)l2 

x [1 - 
lba, 

x g(” ==5 + o(a;)l. s > 2mq. (52) 

The combinstloe’of factors multlplyiag I+$*rel(0)12 from the left is 

ulwsys greater thee unity (this follows from Eq. (8). the observation 

thst F(v) ir, a moeottiically decreasing function of v. snd the fsct 

that v**“==l > .==1,. As a result. lo the sbseoce of the rsdistive 

corrections, IxnS(0,0)12 would slvsys be larger than I+~“re1(0)12 lo 

agreement vlth the ‘tighter coefioeleot’ argument given folloving 

W. (8). (This s..umea. of c0"r.e. that it 1. possible to fit the 

relativistic spectrum using a Schradinger model snd the given (I..) 

For M < 2mq, Eq. (12) aed our conjectured forma for Ixa(0.0)12 

lo Eq. (49) give the sltenmtive expression 

2 4 IX~(O.O)l. = 7 
4=q 
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IV. 'IlIE CORRlXTIONS A AND A' 

Ye eov return to a brief di.cussioe of the radiative snd 

relstivistic correction. A. A' to the leptoeic vidth. of qi .bound 

states defined in Eq.. (1) snd (2). In Pef.. 1 and 2, we used duality 

md the QCD expsnsion of a(a+e- + qi) to l stim.te these qruntities to 

order .f. Eq. (48) in the present paper provides s simple derivation 

of the du.llty relation, and justifies our eerller extraction of the 

Colllorb-related term. (pouere of a./~) from the QCD perturbation 

sale*. These tens* are p.rt of Ix~(0.0)12- 

The correction A,, v.. derived to Ref. 1. In the pre.ent notation 

it im given to order v2/c2 by 

A,, = 2 [x~(O.O,]-~ j;I dr K,(m,=)[x~~0,0) - & i= x”.c$=.o)l 

+ 42 xnD(O.O) - A? g I= x&.0)1} , (54) 

where Kd) is the large-large D st.te component of the Bethe-Salpeter 

veve function end Ko(mqr) is the exponentislly decreasing hyperbolic 

Be.sel function. We vi11 suppose th.t the dorinsnt S-.tste vave 

fwtloe can be appeorilated for r au11 by . .erie. solution to a 

relacivl.tlc Sc!x8dioger equation 25 vith the proper no 

r-0. 

lsllzstton et 

(55) L&.0) = L+JO.W(1 - f =e "q' -g ' k2r2 + O(af) 
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vhere k2 = m,(E-y,(O)). We vi11 neglect the D-state cootributio& The 

integrals over r in Eq. (54) are esslly perforwd. and ve find that 

+ o(a;). 06) 

In Ref.. 1 and 2. we identified A, vith (E,-V,(O))/~B~ -fve2(0). 

the result appropriate for nonsiegular interactioes ss shorn lo 

Eq. (61) of Ref. 1. In the presence of a color-Coulomb siogulerlty, 

the approrimation to A, in Eq. (56) contains an extra piece 16aJ9r 

which contributes one third of the ‘radiative correction’ lo gqa. (43) 

or (48). It is not an extra contrlbutioe to the radiative correction: - 

lo the absence of a coofiuing ieteractloe. one must get the sow total 

vslue for Ixs(0.0)12 or a(e+e- - + qq) vhether the calculstioe is done 

using perturbation theory or the Bethe-Sslpeter equarlon. The effect 

of iecluding a eoofieing interactloo is simply to renormalire xJO.0) 

.a lo Eq. (40). The short range corrections defined by rstlos of wave 

functions are unchanged to the accuracy to vhich ve are vorking. By 

choosina A, = 1 3 v,’ lo Eq. (43) end Refs. 1 and 2. we have lo fact 

redefined A, and muat delete the term 16a,/9x from Eq. (56). 

We remark alao that the division of the vorlous as-dependent terms 

into corrections A, and A; (the ‘rsdlrtlve’ correction relative to a 

particular choice of “eve function in Eq. (2)) Is gauge dependent, 

though the total reeult Is not. Our treatment of the Betha-Salpeter 

equation presupposes the use of the Coulomb gauge, vhereas the free QCD 

ulculatlons ere usuelly done in the Feynmen gauge. 
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Ue will henceforth define h to be L v2 
3 a’ 

thus retaining only the 

last term In Eq. (54). Bowever. we note that (l- f “z, Is a natural 

factor to isolate in Eq. (1) for two reasons: First. it is the analog 

of the overall factor (1 - f 02) which appears In the free croes section 

for e+e- + qi (a fact which we used lo Refs.1 and 2 and the discussion 

folloving Bq- (AA)) and secood. it depends only on (on, wbfle all other 

te- depend OD. aa. With thin def1pItic.n the fuaction IIf”e(0.0)12 

needed in Sec. III is given by Eq. (67). 

If we vish finally, to separate II,J0.0)t2 in Eq. (1) into a 

leading term and a ‘radiative correction’ s LIB in Eq. (2). we muet 

choose an appropriate initial approximation for the Bethe-Salpeter wave 

fuoct ion. A usual choice lo phenomenological studies of quarkonium is 

to equate the function Ygl (0) in Eq. (2) vfth the oonrelativistic 

Schradl~er wave function for the potential in Eq. (21). but this 

choice neglects essentially kinematic relativistic effects which can be 

quite large for light-quark systems. We prefer to circumvent this 

problem in a way useful for numerical atudlea and consistent vlch our 

earlfer duality arguments2 (but perhaps awkward for perturbatlve 

ulculatlons) by ulculatlng YE’(r) for r > m-l 
-3 

using the Salpeter 

equatloa aad watching the result to (L eolutlon of the relatlvistlc 

Schradfnger equatlo.25 for r C m;l aa la Sec. II. In this case. the 

*ryaent to Ref. 2 gives 

16.5 2 
r, 3 $0) (1 - ; .$(l - )n g(v9 + c-2 

=s 
7) * 

(57) 

where g(v) is defined la Es. (44) and 



C; = 24.26- 0.115 Nf . (=I 

The first-order correction 16as/3x in this expression is independent of 

(say reasonable) choice of Yzl(O) f or the reasons sketched by 

Celmaster23 and by Kunnner aod Uirthumer. 26. The value of Ci depends on 

this choice (and on the choice of reaormalization scheme). our result 

is equal for the free cross section a(e+e- + qi) to that obtaloed by 

simply extracting the known color-Coulomb factor F(r”‘) from the QCD 
- 

perturbation series in the MS scheme. 2 

VI. S-Y 

In this paper, yc have derived a Jh’KB relation between the square 

of the Bethe-Salpeter two-fermion wave function at the origin and the 

Inverse density of states of the system. Our derlvatfon holdm for the 

realfstic situation in which the two-fermion (quark-antlquark) 

Interaction includes a color-Coulomb component at short distances and a 

long-range confInIng interactioa. Our prfoeipal results are *s 

follovs. 

For l- statee, w fiod that 1~.(0.0)1~ is gfven for ?I, > 2mq by 

I+.s0,00l* = FPl) 
.2 

-5” rel ds 16~ 

16~’ 
+ l- 7ii- g(P1) + O(a$l * (59) 

where P(v) Is the Coulomb factor defined In Eq. (II), I$, Im the -as of 

the nth state. and v “’ is the relatlvistfc velocity of a free quark 

with ~ss mq snd total energy n,l2. This cxpresslon includes the 
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effects of the short-range gluonic rediative corrections; the function 

g(v) Is defined in Eq. (44). For HP < 2mq, we believe (but have not 

proved) that 

Ix~(o.o>12 - g 211 - z$ + O(a$ l (60) 

. result which connecta smoothly tith Eq. (59) for v tel + 0 and reduces 

to the (proven) nonrelativistic express1011 in Eq. (12) for 1P8,,-2mq1/2rq 

<< 1. Using them reaulta, we find that the leptoaic vidth for the 

decay of l- states Le given in terms of the inverse density of states 

by 

22 
= 'q rel r&-s-) = I vrn 

x(1-f m 

1 gel 2). n, > 2mq- 

or by 

(61) 
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We can also use the results in Eqs. (59) and (60) and thi 

corresponding results for P Schrudinger potential model fitted to the 

same spectrum to relate the relativistic and nonrelativistic wave 

functions. If we elilinate dMJdn (- dE,/dn) between Eqs. (10) and 

C-59) * or (12) end (601, we find that for e fixed II, 

lx&Lo)12 - 
(63) 

16.2, 
x [l - 3r g(v==l 1 + o(.,2)1. ‘h > 2mq. 

n2 lb3 
1&s(o.o)12 = --p;“s”==1(o)12 [l- * + o(+, H, < 2Pq. (a) 

P 

These relationa allow ue to correct the wave functions or leptooic 

uidthe calculated In the phenomenologlcal SchrudInger theory to obtain 

reliable relativietic predictlone. The corrections are quite large for 

light quark systems. 

The preseot reeulte can be ~enerrlired to different spin-parity 

states by ueing the Coulomb fector for non-zero angular momentum (eee 

Befe. 5 and 9). end cbeaging the relatlvietlc end redietlve correctlone 

to those appropriate to the process of lntereet. 
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TABLE I. Numerical test of the relativistic .lUKB expression for IYiE1(O))2 

in terms of the inverse density of states. Eq. (31. The energies and wave 

functions were calculated for the spinless SalpeLer equation with an oscillator 

potential, Eq. (13). dEu/dn was calculated fra P cubic fit to the spectrum 

for n-1-4. 113 Energies and masses are given In units of k , with k the spring 

constant of the oscillator. l@O) I2 is given in units of k. 

%s dEu/du Error 

.nna Exact 2 

3.276 1 1.133 1.469 0.2872 0.2931 

2 2.553 1.375 0.5012 0.5020 

3 3.887 1.307 0.7023 0.6972 

b 5.152 1.238 0.8896 0.8871 

-2.0 

-0.2 

+0.7 

+0.3 

1.310 1 

2 

3 

4 

1.660 2.oLz 

3.528 1.739 

5.165 1.550 

6.654 1.443 

0.1846 

0.3766 

0.5601 

0.7515 

0.1864 -1.0 

0.3758 +0.2 

0.5616 -0.3 

0.7477 +0.9 
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TABLE III. Numerical test of the relativistic JUKB expression for jr'+O)j* 

in terms of the inverse density of states. Eq.01, using exact results for 

the spin-dependent Salpeter equatldn for an oscillator kernel with vector 

couplin8, Ref. lb. dEn/dn was calculated from a quadratic fit to the ?S1 

epectmm for n-1-3. Energies and masses are Riven in units of l/3 k , with 

k the spring constant of theoscillator. is given in units of 

k. 

=9 n EnC3S1) dEn/dn Itp',"(O) I* Error 

.JmB !5act x 

3.276 1 1.316 1.550 0.3364 0.3271 +2.0 

2 2.851 1.520 0.6106 0.6078 0.5 

3 4.356 1.690 0.8975 0.8924 0.6 

1.310 1 2.420 2.101 0.2886 0.2852 1.2 

2 4.457 1.97.4 0.5816 0.5825 0.02 

3 6.368 1.848 0.9042 0.9003 0.5 
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TA8lJI IV. Numerical test of the nonrelativistic JUKB relation for 

1lp-% I2 in Eq.(lO) for the sFngul.%r potential V(r) - -a/r + br 
-2 

vith a - 0.25 and b - 0.18 GeV . and q q : 1.45 GeV. dEn/dn was 

calculated from cubic polynomial fits to e&n as a function of Pn n 
(see itef. 15). 

a Eli dEp.u 

(ce-0 (G=W 
(0) I2 Ils~===%O) I2 ElT0r 

Predicted Exact I 

(ceV3) (CeW3 

1 0.5161 0.6273 0.03585 0.03869 -7.4 

2 1.0556 0.4667 0.03244 0.03237 +0.2 

3 1.6779 0.3890 0.03010 0.03020 -0.3 

1, 1.8451 0.3472 0.02896 0.02895 +0.02 

5 2.1768 0.3185 0.02816 0.02829 -0.5 

. 
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TABLE V 

Numerical test of. the relativistic JWB relation for lim & (r)lYy%) 12, ro4lT ns 

Eq. (51). for the singular potential V(r) - -a/rtbr with a * 0.25, 

b - 0.18 GeV2, and m = 1.45 cev. 
P 

dEn/dn was calculated from a polynomial 

fit to the lowest six energies. 

. 

E* "X4 ML 
n L "relg Error 

0 
16x2 

dn 
cc4 (W3) (X) 

'1 0.4924 0.519 0.0242 0.0229 -5.6 

2 1.0022 0.669 0.0281 0.0280 -0.3 

~3 1.3925 0.737 0.0309 0.0306 -1.0 

4 1.7260 0.119 0.0334 0.0332 -0.6 

5 2.0236 0.808 0.0355 0.0350 -1.3 
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FIGORE CAPTION 

;.l Illustration of the dffference betveen nonrelativistic and rela- 

tivistic potentials which give the same energy spectrm. using the 

potentials r* 
2 

in the spinless Salpeter equation. and the equivalent 

nonrelativistic potential V(r) - Lpi+, in the Schradinger 

equation. V(r) IS quadratic for r<< 2a 
9' 

and approaches the linear 

potential skwm in the figure for 'c>, 2m . ThLs change in the 
q 

danLnant r-dependence is reflected in the decreas5nS spacing between 

adjacent levels. E. P 
9' 

and r -1 are given iti units of k1j3, with 

k the spring constant of the relativistic oscillator. 
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